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Abstract Machine Learning has been shown a successful component of meth-
ods for Automatic Music Composition (AMC). Considering music as a se-
quence of events with multiple complex dependencies on various levels of a
composition, the Long Short-Term Memory-based (LSTM) architectures have
been proven to be very efficient in learning and reproducing musical styles. The
“rampant force” of these architectures, however, makes them hardly useful for
tasks that incorporate human input or generally constraints. Such an example
is the generation of drums’ rhythms under a given metric structure (potentially
combining different time signatures), with a given instrumentation (e.g. bass
and guitar notes). This paper presents a solution that harnesses the LSTM se-
quence learner with a Feed-Forward (FF) part which is called the “Conditional
Layer”. The LSTM and the FF layers influence (are merged into) a single layer
making the final decision about the next drums’ event, given previous events
(LSTM layer) and current constraints (FF layer). The resulting architecture
is called the Conditional Neural Sequence Learner (CNSL). Results on drums’
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rhythm sequences are presented indicating that the CNSL architecture is ef-
fective in producing drums’ sequences that resemble a learnt style, while at
the same time conform to given constraints; impressively, the CNSL is able
to compose drums’ rhythms in time signatures it has not encountered during
training (e.g. 17/16), which resemble the characteristics of the rhythms in the
original data.

Keywords LSTM, neural networks, deep learning, rhythm composition,
music information research

1 Introduction

Computational systems that can claim to be creative [8] have long been the
focus of research. Despite the inherent difficulty of formally defining the notion
of creativity, numerous working definitions exist and equivalently various such
systems [4].

Music has received significant attention in relation to other arts such as
graphical arts, painting, dance, literature or architecture due to its rigorous
formalisation, available from the early stages of its evolution [29] as well as
for its advantageous quality to not require the complicating mechanisms of
referential meaning in its study [8].

The seminal work of Hiller and Isaacson [14], on the composition of a
musical piece using a computer program, was published as early as shortly after
the introduction of the very first computer while Wiggins et al.[35] present a
detailed account of various musically creative systems.

The spectrum of musical creativity is fascinating and certainly wide, en-
compassing creativeness in musical theory / philosophy, listening, education,
performance and therapy among others [8]. Creativeness in musical composi-
tion represents one of the four major areas of musical creativity [26].

Accordingly, the musical composition process can be mapped to an al-
gorithmic approach [22,17]. Among numerous definitions of Algorithmic (or
Automatic) Music Composition (AMC) [34,17], D. Cope1 provided an interest-
ing alternative, “a sequence (set) of rules (instructions, operations) for solving
(accomplishing) a [particular] problem (task) [in a finite number of steps] of
combining musical parts (things, elements) into a whole (composition)” [31].

AMC is a complex problem with tasks ranging from melody and chords’
composition to rhythm and lyrics, among others [5]. AMC applications include
systems with varying degrees of combination of computational creation (e.g.
fully automated background
harmonisation music or assisted co-composition) with humans’ creativity for
the production of musical works [11]. AMC has been approached with a
plethora of methods from various points of view of Artificial Intelligence meth-
ods such as grammars, symbolic & knowledge-based systems, Markov chains,

1 Panel Discussion in the ICMC ’93.
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artificial neural networks, evolutionary population-based as well as self-similarity
and cellular automata [11].

Artificial Neural Networks (ANNs) acted as a powerful computation tool
to extend the available methods. The first attempts were usually focused on
the four-part (Chorale) harmonisation task (e.g. [13], [7]) by proposing pure
neural architectures or combinations (hybrid approaches) with Ruled-based
systems. However, the first impressions were not remarkable and probabilistic
approaches still had better results by that time [2]. With the advent of Deep
Learning architectures numerous research works have been published using
different types of ANNs and, especially Recurrent Neural Networks (RNNs)
for composing music (e.g. [12,20]).

1.1 Motivation & Contribution

Recurrent Neural Networks, and especially the Long Short-Term Memory
(LSTM) networks, have been utilised for music generation (see [33] for fur-
ther references), since these are capable of modeling sequences of events. How-
ever, hitherto proposed architectures (e.g. [16]) focused on the generation of
sequences per se, without considering important constraints.

For instance, the performance of human drummers is potentially influenced
by what the guitar and bass player plays, while the tempo of a song affects
the density of their playing. Additionally, human drummers could play drums
on a time signature they have never played before, e.g. 15/8, by utilising the
knowledge they have obtained only by practicing (learning) 4/4 beats; this
happens because human drummers have an a priori understanding of metric
information which helps them perform drums’ rhythms on meters they have
never seen before.

Using the LSTM architecture, it is methodologically impossible to compose
drums’ sequences in unknown time signatures for the learnt style, or follow
other instruments. To address the aforementioned weaknesses of the previously
proposed methodologies this work proposes the combination of different neural
network layers, i.e. Feed-Forward (FF) and LSTMs, for composing drums’ se-
quences based on musical parameters, i.e. guitar and bass performance, tempo
and grouping indications, and metric information. The resulting architecture
is called Conditional Neural Sequence Learners (CNSLs).

The CNSLs are able to combine implicitly learnt information (LSTM mod-
ule) and explicitly defined conditions (FF module), allowing the generation of
musical sequences (drums’ sequences in the herein examined case) that resem-
ble a musical styles through implicit learning and, at the same time, satisfy
some explicitly declared conditions that are potentially not encountered in
the learnt style. This fact gives the proposed architecture a clear advantage:
complex sequence-related rules (e.g. rhythm relations between accompanying
instruments and drum generation) do not need to be explicitly formulated
(since these are implicitly learnt), while at the same time employing explicit
information is allowed.
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The remainder of this paper is organised as follows: Section 2 presents
background information and existing research on Automated Musical Compo-
sition and related notions. Next, Section 3 presents the proposed combination
of LSTM and Feed Forward Neural Networks for conditional rhythm compo-
sition. Section 4 details the experimental evaluation of the proposed method,
while the work is concluded in Section 5.

2 Related Work

Following the definition of creativity by Jacob [17], in a post-digital computer
age, Algorithmic Musical Composition (AMC) mostly refers to a process of
incremental and iterative revision similar to hard work in contrast to creativity
being the result of inspiration or genius similar to a “flash out of the blue”. The
use of Artificial Neural Networks (ANNs) has long be proposed for automated
composition2. The capability of ANNs to resemble human creative activities
has been the main reason for their use in AMC despite the extensive training
required by ANNs in order to do so.

AMC is fundamentally based on the ground-breaking work of Guido d’Arezzo
who invented a formal music notation, approximately a millennium ago [10].
The evolution of the notation led to a set of rules and frameworks that guide
the creation process of musical composition [28]. Accordingly, music may be
represented as a sequence of events that feature modeled probabilities between
them [5], leading thus to the prediction of current events based on past events
and potentially the use of extraneous information.

A plethora of methodologies have been proposed for the purposes of ACM
such as Mathematical models, Knowledge based systems, Grammars, Evolu-
tionary methods, Systems which learn, and Hybrid systems [31], while many
of these areas are indeed intertwined. Despite the wide range of approaches
in the domain, a few open problems persist even nowadays: the requirement
for incorporation of human domain experts during the evaluation phase, the
trade-off between knowledge representation and search methodology as well
as the mapping of human creativity, a creativity with vague and case-specific
definition, to the ACM methods.

The Feed-Forward ANN is a very common version of ANN, wherein neu-
rons/units are commonly divided in three types of layers, namely input, hid-
den, and output. Interconnection of units between different layers is achieved
by use of weights that are multiplied with the values of their respective input
unit. The resulting output is then propagated to a transfer function through
units to the output unit. In Feed-Forward ANNs the “learning” procedure
describes their ability to modify the aforementioned connecting weights in or-
der to optimally match known target values, for the scenario of supervised
learning, by use of error minimisation. Similarly to ANNs, Recurrent Neural
Networks (RNNs) share a relatively common architecture though hidden lay-
ers exhibit a larger degree of sophistication by featuring the ability to include

2 Papadopoulos & Wiggins [31] collected an extensive such use list, dating back to 1992.
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connections that remember past events. AMC using RNNs has been exten-
sively proposed for purposes such as generation of chord sequences [23] and
melodies [27].

However, Recurrent networks suffered from training problems (vanishing or
exploding gradient problem) which was addressed by Hochreiter and Schmid-
huber [15] and resolved with the Long Short-Term Memory (LSTM) archi-
tecture which is a initial form of the RNN architecture. As this solution has
been effective, the LSTMs prevailed and became the standard for recurrent
networks. Following the principles of RNNs, LSTM networks are generic in
the sense that given adequate network units, they allow for any conventional
computation. In contrast to RNNs, LSTMs are more suited to learning from
experience for classification, as well as process and prediction of time-series,
when there are time lags of unknown size bounded between important events.
LSTMs feature relative insensitivity to gap length, thus being advantageous
to alternative forms of RNNs or hidden Markov models.

Accordingly, LSTMs have been utilised extensively for AMC purposes such
as learning chord progressions as well us creating musically-appealing four-
part chorale harmonisations. Eck & Schmidhuber [9] describe experiments for
learning chords along with accompanying melodies in the blues style using
multiple LSTM blocks. The generation is performed by seed notes and chords
while the authors reports satisfying results. The BachBot [24] system is a
pure recurrent network architecture with the objective to generate polyphonic
music in the style of Bach’s Chorales. The proposed architecture consists of 3
LSTM layers while the generation is done by giving an initial soprano melody
seed. Hadjeres et al. [12] proposed DeepBach, a complex deep neural network
architecture, specialised again for Bach’s Chorales. DeepBach consists of two
recurrent (LSTMs) blocks used for summing up past and future information
together with a feedforward layer providing information for the current events.
The three outputs are then merged and passed on to a final Feed-Forward
network. Generation is done by sampling, using a pseudo-Gibbs procedure
while the results presented are really promising. Finally, more information for
different topologies and strategies can be found in the Deep Learning Music
Survey [3].

To the best of our knowledge, there are limited works attempting learn-
ing and generation of percussion (drum) progressions with neural networks.
Choi et al. [5] introduced an LSTM-text based approach for automatic drums’
generation. In order to encode simultaneous drum events into texts for train-
ing data, they used binary representation of pitches. The authors generated
drums’ sequences with seed sentences and reported promising results. In [16],
Hutchings presents a method for the generation a full drum kit part given
a kick-drum sequence using a “sequence-to-sequence” neural network model
that encodes multiple musical styles. Results indicated that use of a sampling
technique drawing from the three most probable outputs at each subdivision
of the drum pattern were promising, but heavily dependent on style. Most
importantly though, and similarly to the rest of existing works, [16] employs
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solely raw drums’ information in contrast to our proposed method, rendering
it thus not comparable to our approach.

3 Conditional Rhythm Composition with LSTM and Feed Forward
Neural Networks

Herein, we introduce a novel architecture for creating drums’ sequences by
taking into account the drum generation of previous time steps along with
additional musical information regarding metric structure, tempo, grouping
and instruments playing. Section 3.1 describes the collection and preprocessing
methodology for the training data, while Section 3.2 presents the two proposed
model’s architectures.

3.1 Data Collection and Architecture Information

The utilised corpus consists of 105 excerpts of musical pieces, featuring three
bands with average length 2,5 minutes each, which were collected manually
from web tablature learning sources 3. During the conversion to MIDI files,
preprocessing was applied in order to maintain the drum, bass and single guitar
tracks. For each song, selected characteristic snippets were marked as different
phrases (e.g. couple, refrain). The phrasing selections and the annotations were
conducted with the help of students of the Music Department of the Ionian
University, Greece.

The dataset is separated to 3 parts with 35 pieces from each band plus 5
synthetic pieces with phrases including Toms and Cymbals events due to the
fact they had very few appearances in the learning data. Band A (denoted as
AB) follows the “80s Disco” style while Band B (denoted as PF ) follows “70s
Blues and Rock” with Band C (denoted as PT ) having the most contemporary
style featuring “Progressive Rock and Metal”.

We use two different input spaces to represent the training data and feed
these into two different types of ANNs. The first one, an LSTM network, cor-
responds to the drums’ representation while the second one, the Feed-Forward
network, represents information of the bass and guitar movement, the metri-
cal structure, tempo and the grouping (phrasing) information. Standard MIDI
notation form is used with the time quantisation set to 1/16th note.

3.1.1 LSTM Layers’ Representation

For the LSTM layers’ data input representation, we use the item or one-hot
encoding which has been used extensively in similar research [5,25]. The key
idea is to consider each possible pitch note as a distinct element (token) of a
vocabulary. Considering N distinct input tokens, then the presence of a note
pitch will be encoded as value 1 for the corresponding input token and value

3 http://www.911tabs.com/

http://www.911tabs.com/
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0 for all the rest tokens. As far as the drums are concerned, two different
representations are used which lead us to two variations of the proposed ar-
chitecture. In addition, we increased the vocabulary with two elements acting
as flags, indicating the beginning (pitch value −1) and the ending (pitch value
128) of every training piece. Finally, we only take into account pitch and onset
time parameters of every MIDI event; thus, offset times (ending positions of
notes) are not calculated.

Following the same methodology for conditional composition, similarly to
Makris et al. [25], the representation is based on text words, as proposed by
[5]. To encode simultaneous events in a track into texts, binary representation
of pitches is used, i.e., standard components of drums - kick, snare, hi-hats,
cymbals and toms. Due to the expansion of the training data, and in order
to achieve efficient representation and learning, we increase from 5 to 11 the
retaining components; kick, snare, closed and open hi-hat, ride cymbal, three
tom events, two crash and one china cymbal. There can be theoretically 211 =
2048 words, but since the combinations of drum components in pieces of the
dataset that are actually played are limited, these were restrained to 97.

Moreover, herein a variation of the drums’ input data representation is
introduced leading to multiple LSTM Blocks, each one responsible for learning
different drums’ components. The training data is separated to 3 categories,
with one-hot encoding; Input1 for kick and snare, Input2 for hi-hat and ride
events and Input3 for tom, crash and china events with corresponding 7, 8
and 13 number of features, respectively.

3.1.2 Feed-Forward Representation

Moving on to the Feed-Forward (FF) input space, combinations of one-hot
encodings of every musical aspect were taken into account regarding guitar,
bass, tempo and grouping and metrical structure information with an overall
set of 26 features. Table 1) summarises all the proposed FF musical features.

Table 1: Feed-Forward Network Features.

Feature description Feature indexes

Guitar Performance and Polyphony 1-9

Bass Performance 10-13

Tempo Information 14-18

Metrical Structure 19-21

Grouping Information 22-26

As far as the metric structure is concerned, a 1x3 binary vector is included
representing metrical information for each time step. This information ensures
that the network is aware of the beat structure at any given instance. Its
first digit declares the start of a bar, the second digit the start of half-bar,
while the third digit, the start of quarter bar. For example, the first 9 time
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steps of a sequence with time signature of 3/4 can be translated to metrical
information as: [111], [000], [000], [000], [001], [000], [010], [000], [001]. In the
training corpus, 14 different time signatures were detected. The most common
was 4/4, though more complex time structures can be found, such as 9/8 or
15/8.

Moving on to the guitar and bass, we used information regarding the
polyphony of each instrument and whether it performs or not in each time
step. Since from the perspective of a drummer the information about actual
pitch notes is not directly involved in the beat structure, this feature set’s pur-
pose was to assist the network in generating drums’ events by also considering,
during learning, when onsets on the bass and guitar occur (i.e. learning the
contribution of each instrument to the overall rhythm with their onsets and
rests). Moreover, the polyphony of the guitar track can be useful due to the
ability of the network to learn how to perform when encountering chords or
single notes.

Tempo information potentially allows the network to adjust the density of
the events it produces (e.g. slower tempos might tolerate more events within
a bar in comparison to faster tempos). Thus, the network is aware of changes
during a song, which may lead to change the style of playing, while the group-
ing part contains annotations about structurally coherent temporal regions of
the music (i.e. different couples or refrains). Moreover, flags for the first and
the last measure of every phrase were included. The use of grouping indicators
allows the network to behave properly and learn the initial and final drum
events within a phrase.

3.2 Proposed Architecture

The proposed architecture consists of two separate modules for predicting the
next drum event. The LSTM module learns sequences of consecutive drum
events, while the Feed-Forward module handles musical information regarding
guitar, bass, metrical structure, tempo and grouping. This information is the
sum of features of consecutive time-steps of the the Feed-Forward Input space
within a moving window giving information about the past, current and future
time-steps. The length of the window depends of the memory of the LSTMs
(Sequence Length) and has value of 2 ∗ Sequence Length + 1 time-steps. Since
most of the training examples are in 4/4 Time Signature, the memory of the
LSTMs is predefined with the fixed value of 16 time-steps corresponding to a
full bar.

For our experiments we use two variations of the proposed architecture
depending on the different LSTM representation input data as described in
Section 3.1.1. The first one, denoted as Arch1, is the same as it was used on our
prior work [25] and it consists of a single LSTM Layer block merged with the
Feed-Forward Layer on a single softmax output. The second variation, Arch2,
consists of 4 input spaces with 3 LSTM Layer Blocks, each one responsible for
different drum’s Inputs and the Feed-Forward Layer combined into different
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Merge Layers thus leading to independent softmax outputs. The resulting
architecture is called the Conditional Neural Sequence Learner (CNSL) and
Figure 1 summarises both variations.

As far as the configuration for LSTM Blocks is concerned, we use two
stacked LSTM layers with 256 Hidden Units and a dropout of 0.2, similarly to
the work of Zaremba at al. [36]. Accordingly, the LSTMs attempt to predict
the next step in a stochastic manner. The first LSTM layer creates a feature
vector while the second calculates the final predictions. In each prediction for
time index n, the network outputs the probabilities for every state. The Feed-
Forward Layer has 256 Hidden Units and its output is fed into Merge Layers,
along with the output of the LSTM blocks. Finally, each Merge Layer then
passes through the softmax nonlinearity to generate the probability distribu-
tion of the prediction. During the optimisation phase, the Adam [21] algorithm
is used while the loss function is calculated as the mean of the (categorical)
cross-entropy between the prediction and the target of each output. For our
experiments, we used the Tensorflow [1] deep learning framework and Keras
[6] library.

(a) Architecture 1 (b) Architecture 2

Fig. 1: Proposed Deep Neural Network Architectures for Conditional Drums
Generation.

4 Results

The conditional (Feed-Forward) part of the CNSL architecture allows the in-
clusion of additional information or “constraints” that potentially keep the
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entire network “on-track” and enable it to respond to conditions that were
not encountered during training (e.g. unknown – to the network – time sig-
natures). Therefore, training and generating with a network that does not
incorporate the conditional part is expected to lead to generated rhythms
that could not possibly adapt to, e.g., time signature changes. While different
networks without conditional layers can be used on parts with different time
signatures, e.g. a network trained in 4/4 for the 4/4 parts and one trained
on 5/4 for the 5/4 parts, the conditional layer offers another important ad-
vantage: it allows the generation of drums’ sequences in time signatures that
have not been used during training. For instance, even if a CNSL network has
not encountered a 17/16 time signature during training, the metric informa-
tion provided in the conditional layer (which incorporates encoded information
that corresponds to the accentuations of a 17/16 time signature) will allow the
network to understand the previously unseen metric structure and adapt to
it.

The aim of the presented results is to validate the role of the conditional
layer and to highlight potential weaknesses in the ability of the network to
generate drums’ rhythms. The role of the conditional layer, is examined by
testing both proposed architectures trained on separate bands with diverse
music characteristics. Furthermore, different approaches regarding the inclu-
sion of selected features of the conditional layer are presented in specific trained
networks.

4.1 Experimental Setup

Music from bands has been included in the training corpus that belong to
different styles, each one having unique rhythmical characteristics. Regard-
ing drums’ compositions, AB (pop/disco band) songs are easily recognised
with the continuous hi-hat playing in high tempos. On the other hand, PF
(blues/rock band) is identified with the slow tempo and simple patterns, es-
pecially with Ride cymbals. Finally, PT (progressive/metal band) is char-
acterised by the complex playing, even in 4/4 Time Signatures, along with
continuous changes in tempo and time signature. It is worth noting that PT
is considered as the evolution of PF in the music industry. However, a signif-
icant difference can indeed be found between the repetitive drum playing of
PF band and the constantly changing rhythms of the PT band.

Two separate experiments are conducted to highlight different aspects of
the Conditional layer.

(a) Genre music style capture: The aim of this experiment is to validate the
CNSL architecture for generating drums’ rhythms that resemble the learnt
style for each corresponding band of the training corpus. Arch1 and Arch2
are employed as core components of the LSTM part of the network (de-
scribed in Section 3.1.2).
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(b) Examining the Conditional Layer: Several approaches concerning the im-
pact of the feature selection (described in Section 3.2) of the Conditional
Layer are presented.

4.2 Validating CNSL Architecture for Capturing Certain Musical Styles

In order to validate our system we use 9 pieces (three for each band) which
were not included in the training dataset with the following music parameters:

1. AB1 with sparse Time Signature changes (2/4 and 4/4) and high tempo
2. AB2 with 4/4 Time Signature and high tempo
3. AB3 with 4/4 Time Signature and very high tempo
4. PF1 with 4/4 Time Signature and low tempo
5. PF2 with 4/4 Time Signature and very low tempo
6. PF3 with 4/4 Time Signature and moderate tempo
7. PT1 with 7/8 Time Signature and moderate tempo
8. PT2 with continuous Time Signature changes (4/4, 3/8, 5/8 and 7/8) and

high tempo
9. PT3 with sparse Time Signature changes (17/16, and 4/4) and low tempo

The proposed CNSL architecture is able to generate sequences that reflect
characteristics of the training data; however one can suspect that the Con-
ditional Layer might have no impact, or even to jeopardise the ability of the
LSTM to generate distinguishably different music styles. To this end, networks
trained in the style of AB, PF and PT , in both architecture variations Arch1
and Arch2, are employed to compose drums’ sequences using the 9 test tracks
that were presented above. To validate the effectiveness of the Conditional
Layer, drums’ rhythms generated by systems trained in a certain style are
compared with the same drums’ rhythms generated from systems trained in
different learnt styles in order to examine the ability of a network to imitate a
learnt style. For example, if the system is trained with the PT dataset and it is
“assigned” (i.e. given conditional constraints) to compose pieces from PT (not
encountered during training), will it do it “better” than when it is assigned to
compose pieces from the AB style?

Considering that ground-truth for training and testings pieces is available
(the pieces as originally composed), we can approach the notion of “better
resemblance” by measuring how close the system-generated compositions are
to the ground-truth; this can be done by computing the distance between
cognitively-relevant feature representations of the drums’ rhythms in these
pieces. Such features have been employed for successfully classifying drums’
rhythms according to style [18], and for generating rhythms with genetic al-
gorithms [19]. Thereby, taking the first 16 bars4 from original and generated

4 Features are not extracted from the entire piece to make sure that the results are not in-
fluenced by the length of the pieces; longer pieces move further away from the seed sentence,
potentially accumulating more errors during their life-span.
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drums, features are extracted which estimate numerical values regarding den-
sity, syncopation [32], symmetry and weak-over-strong onset ratio [19] concern-
ing basic rhythmic elements: kick, snare/toms and hi-hat/cymbals; 12 features
(4 features for each of the 3 percussive categories) for each bar are extracted.
The feature values in each bar are summarised with mean and standard devi-
ation, producing a set of 24 global features for every piece.

Table 2 shows the aforementioned distances, using the proposed architec-
tures to learn the corresponding styles. The diagonal blocks in both parts
of the matrix, include mostly the lowest values (indicated as bold numbers).
The results show that style is generally reflected by the networks. Especially in
the case of PT , which features the most idiosyncratic characteristics, both net-
works appear to have learnt this style better, since the generated rhythms from
the PT dataset appear to be significantly closer to the originally-composed
rhythms.

Table 2: Style-specific composition assessment: Networks trained in the style
of AB, PF and PT , in both architecture variations Arch1 and Arch2, are
employed to compose drums’ sequences using 9 test tracks. Mean values and
standard deviations (in parentheses) of distances between ground-truth (orig-
inal drums) and system-generated drums features are given; the minimum
distances for each piece (row) in each architecture (left/right column triplets)
are shown in bold.

ABArch2 PFArch2 PTArch2 ABArch1 PFArch1 PTArch1
AB1 0.48 (0.05) 0.57 (0.01) 0.66 (0.24) 0.40 (0.08) 0.70 (0.08) 0.75 (0.10)

AB2 0.42 (0.16) 0.52 (0.01) 0.64 (0.04) 0.51 (0.05) 0.62 (0.01) 0.54 (0.06)

AB3 0.38 (0.10) 0.33 (0.02) 0.44 (0.08) 0.23 (0.05) 0.39 (0.01) 0.51 (0.03)

PF1 0.73 (0.03) 0.21 (0.01) 0.39 (0.09) 0.76 (0.01) 0.23 (0.03) 0.39 (0.10)

PF2 0.70 (0.03) 0.29 (0.05) 0.31 (0.02) 0.49 (0.03) 0.46 (0.03) 0.24 (0.01)

PF3 0.17 (0.03) 0.19 (0.01) 0.25 (0.01) 0.22 (0.04) 0.22 (0.02) 0.38 (0.04)

PT1 0.29 (0.04) 0.31 (0.03) 0.09 (0.01) 0.40 (0.00) 0.36 (0.10) 0.10 (0.09)

PT2 0.21 (0.04) 0.36 (0.03) 0.09 (0.02) 0.26 (0.03) 0.37 (0.09) 0.04 (0.02)

PT3 0.44 (0.06) 0.29 (0.02) 0.02 (0.02) 0.62 (0.13) 0.42 (0.05) 0.00 (0.00)

4.2.1 Examples of Generated Rhythms

A major difference can be identified between the two aforementioned architec-
tures, specifically by listening to some generations. Arch1 seems to create less
complex drum rhythm generations than Arch2, especially in occasions where
rare (in the context of training) time signatures are incorporated. Music ex-
amples with generated rhythms are available on the web page of Humanistic
and Social Informatics Lab of Ionian University, Greece 5.

Figure 2 illustrates three examples of generated drums’ rhythms, corre-
sponding to different learning settings for the first verse (phrase) of the PT3

5 https://hilab.di.ionio.gr/index.php/en/conditional-neural-sequence-

learners-for-generating-drums-rhythms/

https://hilab.di.ionio.gr/index.php/en/conditional-neural-sequence-learners-for-generating-drums-rhythms/
https://hilab.di.ionio.gr/index.php/en/conditional-neural-sequence-learners-for-generating-drums-rhythms/
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(a) Original

(b) Arch2 − PT

(c) Arch1 − PT

(d) Arch1 − PT− noFF

Fig. 2: Pianoroll demonstration of 2 bars with time signature 17/16 of PT3

song on (a) the original drums, (b) drums composed from Arch1 in the learnt
style of PT, (c) Arch2 with style PT, and (d) Arch2, PT style, without the
Conditional layer.

song, showing 2 consecutive bars. Starting from bottom to top, in the piano-
roll drum depiction, one may identify in the following order kick (red), snare
(brown), ride (blue), hi-hat (green), and crash (pink) events. This example
was selected in order to observe how the system reacts on time signatures
that have not been learnt from the training data and the importance of the
Conditional (FF) Layer. According to the ground-truth, there is a pattern
on kick-snare and hi-hat events in specific beats for the 17/16 time signature
which both architectures with the Conditional Layer capture efficiently. On
the other hand, experiments without the conditional layer are failing to adapt
the particular musical characteristics and generate patterns which have been
encountered more often on the training data leading to confusing rhythms’
generations that misalign with the metric structure and the events of other
instruments.

On the other hand, the second example shows notable approaches of PT2

song from different trained networks. Figure 3 features 3 bars’ generation with
Time Signatures 5/8 and 7/8, from PF and PT networks using Arch2 archi-
tecture. It is thus clear that the PT network captures the corresponding style
and it is closer to the original. However, the PF network, even if it is unaware
of the above Time Signatures (PF dataset is almost consisted of songs with
4/4 Time Signature), follows the same rhythm with “less” playing in terms
of density. This is caused by the Conditional Layer which forces the LSTM
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layers to generate in a specific rhythm that has not been encountered in the
training process, in the learnt style, which in this case leads to less complex
drums than the PT network.

(a) Original

(b) Arch2 − PF

(c) Arch2 − PT

Fig. 3: Pianoroll demonstration featuring 3 bars with Time Signatures 5/8 and
7/8 of PT2 song on (a) the original drums, (b) drums composed with Arch2
in the style of PF, and (c) Arch2 in the style of PT.

4.3 The Role of the Conditional Layer: a Study on Composite Beat Profiles

The Conditional Layer employs information regarding the metrical structure,
tempo and phrasing mapping, as well as the accompanying instrumentation
(bass and guitar) on the musical surface. The importance of each element in
the Conditional Layer can be examined through measuring the periodicity of
repeating onsets of kick, snare, hi-hat & ride, toms and cymbals hits within
the rhythm in specific beats of the measures throughout the piece. The overall
characteristics of the drums’ rhythms used in a piece can be observed by
the composite beat profile, which reflects the distribution of all elements of the
drums’ rhythms of all measure of the same time signature in a piece. Composite
beat profile is defined as an array that describes the frequency counts of each
drum’s onset on each beat of the measure, forming a distribution on each beat
position (according to the metric resolution). The idea of employing frequency
count of musical events for inducing the metric structure was discussed as far
back as in 1990, in the work presented by Palmer & Krumhansl [30].

Composite beat profiles of drums’ rhythms composed by PTArch1 network
are depicted in single bar plots, where different colors represent different
drums’ elements at each position in the measure. For our experiments we



Conditional Neural Sequence Learners for Generating Drums’ Rhythms 15

0 1 2 3 4 5 6 7 8 9 10111213141516

Beat Position

kicks

toms

snares

hihats

crashes

(a) Ground− Truth

0 1 2 3 4 5 6 7 8 9 10111213141516

Beat Position

kicks

toms

snares

hihats

crashes

0 1 2 3 4 5 6 7 8 9 10111213141516

Beat Position

kicks

toms

snares

hihats

crashes

(b) FF− None (c) FF− I

0 1 2 3 4 5 6 7 8 9 10111213141516

Beat Position

kicks

toms

snares

hihats

crashes

0 1 2 3 4 5 6 7 8 9 10111213141516

Beat Position

kicks

toms

snares

hihats

crashes

(d) FF− M (e) FF− Full

Fig. 4: Composite beat profiles of (a) the original drums of the piece PT3 and
the drums’ composition using the following setups: (b) FF− None; (c) FF− I;
(d) FF− M; and (e) FF− Full.

used four different setups regarding the feature selection of the Conditional
Layer:

1. FF− Full – Metrical, Tempo, Phrasing, and Instrumentation information
included.
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2. FF− M – Metrical, Tempo, Phrasing information included.
3. FF− I – Instrumentation information included.
4. FF− None – Conditional Layer is not employed.
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Fig. 5: Composite beat profiles of (a) the original drums of the piece PT1 and
the drums’ composition using the following setups: (b) FF− None; (c) FF− I;
(d) FF− M; and (e) FF− Full.
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The example of Figure 4 demonstrates the corresponding generations of
the PT3 piece in time signature 17/16; which has not been encountered during
training. Figure 4 (a) shows the composite beat profile of the “ground-truth”
piece, i.e. the drums that are actually included in the genuine composition; the
basic structural component in this figure appears to be the strong presence
of kicks and crashes in the first beat (shown as beat 0). Moreover, kicks are
encountered in bars 1, 5, 6, 10, 11 and 13. When the conditional layer is
not used (Figure 4 (b)) irregular drum patterns with low density of kicks,
and high presence of hi-hats are spread all over the beats. This is caused
by the absence of the Conditional Layer, which shows the weakness of the
LSTM layers to generate without constraints. Figure 4 (c) has almost the same
results with the FF− None setup, thus leading us to the conclusion that the
Metrical information is very crucial in such complex tasks. On the other hand,
FF− M manages to give better results than the previous setups, however it fails
on some beats about the presence of the kicks. If we combine metrical and
instrumentation information, Figure 4 (e) shows that the FF− Full manages
to capture efficiently the structure of an unknown for the system 17/16 Time
Signature. Although it fails on the density of hi-hats, the kicks’ presence is
almost similar with the ground-truth.

Figure 5 shows an example of a low tempo song with sparse drumming in
Time Signature of 7/8. The PT1 piece has a strong repeated pattern in beats
of every measure, which is also followed by the same playing pattern of the
accompanying instruments (bass, and guitar). Figure 5 (a) shows the compos-
ite beat profile of the “ground-truth” piece. The basic structural component
in this figure appears to be the strong presence of kicks in beats 1 and 3 while
snare is only encountered in beat 9. When the conditional layer is not used
(FF− None setup) kicks’ and snares’ occurrences are detected in every odd
beat, thus leading to a completely different pattern. Figure 4 (d) shows that
FF− I, with some minor mistakes, captures the style of the drums’ pattern.
However, and mostly remarkable fact of the above case, is the generation that
FF− M setup achieves. Figure 4 (c) is almost identical with the Ground-Truth,
and manages to achieve slightly better results than using all the features of
the Conditional Layer (FF− Full). This can be explained by the important
role of the instruments accompanying a human drummer, and how these affect
the production of drums’ patterns.

5 Conclusions

This work introduces a novel neural network architecture, namely the Con-
ditional Neural Sequence Learner (CNSL), which learns and generates se-
quences under given constraints; an application on learning and generating
drums rhythms under given metrical, bass and guitar constraints is presented.
The proposed architecture consists of a Recurrent module with LSTM blocks
that learns sequences of consecutive drums’ events along with a Conditional
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(Feed-Forward) Layer handling information for musical instruments, metrical
structure, tempo and the grouping (phrasing).

Two variations of the proposed architecture are tested, with different set-
tings about the learnt style and the feature selection of the Conditional layer.
The experimental setup includes test songs from three different datasets with
diverse musical characteristics regarding time signatures and tempo changes;
distances between generated and original drums’ rhythms were calculated,
while composite beat profiles, respectively were compared highlighting certain
aspects of the Conditional Layer.

Results indicated that CNSL architecture is able of producing generated
drums’ rhythms that resemble a learnt style, while the comparison indicated
that the Conditional layer is necessary for allowing the network to follow
changing, rare or even previously unseen (e.g. 17/16) time signatures. Ad-
ditionally, the inclusion of musical information about grouping, tempo and
instrument playing simulate human drummers in tasks such us: changing the
playing style when a new phrase starts, responding to tempo changes influ-
enced by the density of the drums’ generation and responding to changes in
other instruments (e.g. guitar, bass).

Our future work will include the extension of the available training data,
along with the expansion of network architecture with additional elements for
the Conditional Layer featuring information of other instruments and meta-
data. Furthermore, we will set the quantization to 1/64 to include triplet
representations which are very commonly used on drums’ rhythms. Finally,
more experiments will be conducted to test the system’s behavior in different
music genre styles and its ability to adapt to the performance of human drums’
players.

Conflict of Interest: The authors declare that they have no conflict of
interest.
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